f07 — Linear Equations (LAPACK) f07tuc

NAG C Library Function Document

nag_ztrcon (f07tuc)

1 Purpose

nag_ztrcon (f07tuc) estimates the condition number of a complex triangular matrix.

2 Specification

void nag_ztrcon (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo,
Nag_DiagType diag, Integer n, const Complex a[], Integer pda, double *rcond,
NagError *fail)

3 Description

nag_ztrcon (f07tuc) estimates the condition number of a complex triangular matrix A, in either the 1-norm
or the infinity-norm:

ri(A) = [ALIAT L or meo(A) = | Al AT |
Note that k., (A) = r;(AT).

Because the condition number is infinite if A is singular, the function actually returns an estimate of the
reciprocal of the condition number.

The function computes || A||, or || A, exactly, and uses Higham’s implementation of Hager’s method (see
Higham (1988)) to estimate ||A™'||, or [|[A7"]|...

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: norm — Nag NormType Input
On entry: indicates whether x;(A) or k., (A) is estimated as follows:
if norm = Nag_OneNorm, x;(A) is estimated;
if norm = Nag_InfNorm, . (A) is estimated.

Constraint: norm = Nag_OneNorm or Nag_InfNorm.

3: uplo — Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

[NP3645/7] 07tuc. 1

f07tuc NAG C Library Manual

if uplo = Nag_Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag_UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: a[dim| — const Complex Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

On entry. the n by n triangular matrix A. If uplo = Nag Upper, A is upper triangular and the
elements of the array below the diagonal are not referenced; if uplo = Nag_Lower, A is lower
triangular and the elements of the array above the diagonal are not referenced. If
diag = Nag_UnitDiag, the diagonal elements of A are not referenced, but are assumed to be 1.
7: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint. pda > max(1,n).

8: rcond — double * Output

On exit: an estimate of the reciprocal of the condition number of A. recond is set to zero if exact
singularity is detected or the estimate underflows. If rcond is less than machine precision, A is
singular to working precision.

9: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

07tuc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07tuc

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed estimate rcond is never less than the true value p, and in practice is nearly always less than
10p, although examples can be constructed where rcond is much larger.

8 Further Comments

A call to nag_ztrcon (f07tuc) involves solving a number of systems of linear equations of the form Az = b

or A7z = b; the number is usually 5 and never more than 11. Each solution involves approximately 4n?
real floating-point operations but takes considerably longer than a call to nag_ztrtrs (f07tsc) with 1 right-
hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this function is nag_dtrcon (f07tgc).

9 Example

To estimate the condition number in the 1-norm of the matrix A, where

478 +4.56¢ 0.00+0.00: 0.004 0.00: 0.004 0.007
2.00-0.30: —4.11+1.25 0.00+ 0.00z 0.00 4 0.00¢
2.89 —1.34¢ 236—-4.25 4.15+40.80¢ 0.00+ 0.00¢
—1.89+1.15¢ 0.04 —3.69: —0.02+0.467 0.33 —0.26¢

A=

The true condition number in the 1-norm is 70.27.

9.1 Program Text

/* nag_ztrcon (f07tuc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx02.h>

int main(void)

{
/* Scalars *x/
double 1rcond;
Integer i, j, n, pda;
Integer exit_status=0;
Nag_UploType uplo_enum;

NagError fail;
Nag_OrderType order;
/* Arrays */

char uplo[2];
Complex *a=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)*pda + I - 1]

[NP3645/7] 07tuc.3

f07tuc NAG C Library Manual

order = Nag_ColMajor;

#else

#define A(I,J) al[(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f07tuc Example Program Results\n");

/* Skip heading in data file */

Vscanf ("%*["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
#else

pda = n;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A from data file x/
Vscanf (" ' %1s ’'%*x[*\n] ", uplo);

if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3j)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(1i,]J).im);
}
Vscanf ("sx["\n] ");
¥
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,]).im);
¥
Vscanf ("sx[“\n] ");
3

/* Estimate condition number */
fO7tuc(order, Nag_OneNorm, uplo_enum, Nag_NonUnitDiag, n,
a, pda, &rcond, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7tuc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
Vprintf ("\n") ;
if (rcond >= X02AJC)
{
Vprintf ("Estimate of condition number =%10.2e\n\n",
1.0/rcond) ;

f07tuc.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

}
else
Vprintf ("A is singular to working precision\n");
END:
if (a) NAG_FREE(a);
return exit_status;

3

9.2 Program Data

fO07tuc Example Program Data

4

’ L ’

(4.78, 4.56)

(2.00,-0.30) (-4.11, 1.25)

(2.89,-1.34) (2.36,-4.25) (4.15, 0.80)

(-1.89, 1.15) (0.04,-3.69) (-0.02, 0.46) (0.33,-0.206)
9.3 Program Results
fO7tuc Example Program Results
Estimate of condition number = 3.74e+01

:Value of N

f07tuc

:Value of UPLO

:End of matrix A

[NP3645/7]

f07tuc.5 (last)

	f07tuc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	norm
	uplo
	diag
	n
	a
	pda
	rcond
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

